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ABSTRACT

Most models that demand a coarse grid resolution use Arakawa’s B grid. Using this particular 
grid, it is shown that the CFL condition, for the fastest travelling wave, is twice the value than for 
both the non-staggered and the staggered C grid, respectively.

RESUMEN

La mayoría de los modelos que requieren poca resolución horizontal utilizan la grilla B de 
Arakawa. Mediante la técnica de estabilidad lineal, demostraremos que la condición de estabilidad 
para la onda de gravedad es el doble de la requerida para las grillas A y C de Arakawa. La onda 
de gravedad es la de mayor velocidad de propagación en el modelo de aguas someras.

1. INTRODUCTION

Bryan (1969), Gill and Bryan (1971), build up their numerical models, employing 
Arakawa’s B lattice, where the free surface elevation is evaluated at the center of the 
grid, while both velocity components, u and v, are evaluated at the four comers of the 
grid (Fig. 1). In computing both, the Coriolis and the nonlinear terms, quite an amount 
of averaging is omitted.

The theoretical analysis of Mesinger and Arakawa (1976) strongly suggests that grid 
C produce better numerical simulations than grid B. This situation holds true as long as 
the gridpoint resolution is smaller than the Rossby radius of deformation. The reverse is 
also true. Whenever the Rossby radius of deformation is smaller than the gridpoint size, 
grid B gives better numerical simulations than grid C (Bryan, 1989; page 473). Most 
numerical models that demand a coarse-grid resolution are designed using the B grid 
(Semtner, 1986).

The aim of this study is to gain some understanding as to why lattice B works better 
for numerical models with coarse-grid resolution. Following the pioneering work of
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Fig. 1. Spatial representation of Arakawa’s B lattice.

O’Brien (1986) on stability conditions, a series of analytical studies is conducted. For this 
purpose, the linear stability technique developed by von Neumann is used (Charney et al., 
1950,.

In our analysis, we choose to index all the gridpoints and consider the distance 
between grid points as Ax and Ay; where Ax and Ay, represent the gridpoint resolution 
in the east-west and north south directions, respectively (Fig. 1). Other investigators 
choose to call the distance between the same variable as the grid resolution. Our 
indexation makes the interpretation of the stability results more interesting. The same 
indexation criterion was followed by O’ Brien (1986) and O’ Brien & Inoue (1982) (Fig. 
2). The results are quite conclusive. It is shown that the stability condition for the gravity 
(fastest travelling) wave is twice the value than for the non-staggered and the C grids, 
respectively (Mesinger & Arakawa, 1976; O’ Brien, 1986; O’ Brien & Inoue, 1982).

2. THE PROBLEM
The general stability condition of the finite difference scheme is determined by the
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general condition (Mesinger& Arakawa, 1976):

Fig. 2. Spatial representation of Arakawa’ s C lattice.
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3. STABILITY ANALYSIS

3.1. Analysis for the one - dimensional gravity wave

Consider the following set of partial differential equations:

(1)

where g represents the earth’s gravity acceleration; u and v, the velocity components in 
the east-west and north-south directions, respectively; h, the free-surface elevation; and 
H the mean sea level depth.

A second order, centered in space and time finite difference scheme is employed. It 
is obtained:

(2)

where the superscript n, stands for time level; the subscripts the mesh of discrete 
points in the x and y directions, respectively; A x and A y, the gridpoint resolution in the 
x and y directions, respectively; y is equal to A t / A x, and A t represents the time step 
increment (Fig.l).

Define C2 = gH, 0( = pAx) and o ( = v A y ), where p and v, are the east-west and 
north-south wavenumbers, respectively. It is convenient to define Q = (u,v,h). Assume:

(3)

Upon substitution of equation (3) into the set of equations (2), yields:

(4)

It is convenient to define an amplification factor, Z, such that:

In doing so, equations (4) may be rewritten as:

(5)

158



Alejandro L. Camerlengo and Monica I. Demmler

(6)

The operators Lb L2and L3 are defined as:

(7)

The homogeneous set of equations (6) is solved by letting:

(8)

A second order equation for Z is obtained. Namely:

(9)

(10)

(H)

To have a stable ( neutral ) condition the absolute value of Z should be less (equal) 
than (to) one. Otherwise, the finite difference scheme under consideration will be 
unstable. In multiplying the two solutions yields:

(12)

Therefore, if the term under the radical sign, 1 - G2, is positive, then the absolute 
value of the amplification factor will be equal to one. This instance will hold certain if, 
and only if:

( 13)

Given the fact that the absolute value of the sine and the cosine is less or equal to 
unity, and recalling the definition of y, it follows that:
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C A t / A x < 1, (14)

which is the classical C-F-L condition for computational stability.

3.2. Stability analysis for the inertial gravity wave

Let us consider the following set of partial differential equations:

where L4 = 2 f A t.

Following the same procedure as above yields:

(18)

The two complex conjugate solutions are:

(19)
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Upon using the same finite difference scheme as above yields:

Equations (16) may then be rewritten as:

(15)

(16)

(17)

where the value of G has changed. It is:
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(26)
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(20)

In multiplying the two complex conjugate solutions, as in the previous case, we will 
arrive to a neutral stability condition, provided that the term under the radical sign, 1 - 
G2, is positive. This will require that:

(21)

Thus, this is the same stability condition as the one for the unstaggered grid case (O’ 
Brien, 1986; page 177):

(22)

3.3. Stability condition for a two dimensional flow

Let us consider the following set of equations:

(23)

In using a centered in space and time finite differencing scheme, yields:

(24)

where r| is equal to A t / A y. This system of equations, 24, may be rewritten as:

(25)
where
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For this set of equations to have unique solution, it follows that:

(27)

Following the same procedure as in the two previous cases, yields:

where
(28)

(29)

As before, a neutral stability condition will be obtained if:

(30)

Several cases are considered:

a) For Lx = 2 Ax (4 Ax) and Ly = 2 Ay (4 Ay), i. e., 0 = o = n (=71/2), where Lx and Ly 
are the wavelengths in the x and y directions, respectively, yields:

(31)

This same result holds for very long waves. Namely for 0 = o = 0.

b) For Lx - 8 Ax and L = 8 Ay, i. e., 0 = o = ti / 4, yields:

(32)

If Ax = Ay = A, yields:

Following O’ Brien (1986), the CFL condition for the 2 D gravity wave for the 
unstaggered grid, is:

This same result is obtained, for the C grid, using this same type of indexation (O’ Brien 
& Inoue, 1982). Without considering the Coriolis parameter, Mesinger and Arakawa

(33)

(34)
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(1976, page 52) show that the stability criterion for the 2 D dimensional gravity wave, for 
the unstaggered grid, is:

(35)

which is similar to O’ Brien (1986) and O’ Brien & Inoue (1982). Therefore, the CFL 
condition for the B grid, is less restrictive. The stability condition for the gravity wave 
is twice the value of the stability condition of both the unstaggered grid and grid C.

In their reduced gravity model, Adamec & O’ Brien (1978) used a A t = 104 sec. The 
product f A t could be of order one. Therefore, the CFL condition, for the reduced gravity 
models, could easily be violated, if caution is not taken care.

4. CONCLUSIONS

Stability conditions of a series of problems, for the staggered lattice B, leading to the 
shallow water wave equations are considered. Comparison with stability conditions with 
both the unstaggered grid and the staggered grid C are made (Mesinger & Arakawa, 1976; 
O’ Brien, 1986; O’ Brien & Inoue, 1982). It is shown that the stability condition is double 
the value than for the other two grids (equations (33) through (35)) This represents a clear 
improvement of Mesinger and Arakawa’s (1976) solutions.

Therefore, numerical models that require a coarse-grid resolution are designed using 
the B lattice. In doing so, more accurate solutions, for a coarse grid resolution, are 
obtained.
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